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Abstract—Digital twin capabilities have been limited to a
single function, but the reality of physical assets requires digital
twins with multi-domain, multi-function representations. Digital
twins can and should be designed with multi-domain and multi-
functional capabilities to enable adaptability to a diverse set of
system domains and perform various representation tasks. This
approach allows the digital twin to be as specialized as the phys-
ical asset it serves. This study introduces a framework enabling
the development of multi-domain, multi-functional digital twins,
adaptable for use in various representation tasks. The proposed
framework utilizes a collection of digital images for an accurate
depiction of different facets of an asset, ensuring a detailed
yet unified digital twin. The framework is designed to analyze
the human-in-the-loop text-based query and select the most
suitable digital image for execution. The proposed multi-domain,
multi-function digital twin framework reduces the computational
effort by 5.15% when compared to a single, unified digital twin
running all studies concurrently. Details on the development of
the framework are provided, and experimental results validate
the effectiveness of the proposed framework.

Index Terms—Digital Twins, Decision-Making, Computational
Efficiency, Power Electronics, Electric Ships, Multi-Domain,
Query

I. INTRODUCTION

THE marine industry is shifting towards hybrid and all-
electric vessels to mitigate the environmental impact

of naval operations, including global shipping, commercial
voyages, and military defense of international maritime routes.
As combustion engines are replaced with electric propulsion
systems, emissions of harmful pollutants and greenhouse gases
are reduced [1]. Consequently, ship electrification demands
innovative technologies to enhance design and sustain opera-
tional efficiency [2]. There is a trend towards DC and hybrid
system architectures which is motivated by the advantages of
DC systems in naval applications, such as reduced weight,
space, fuel costs, and the ease of connecting parallel gener-
ators [3], [4]. DC systems are characterized by an increased
reliance on power electronics converters for providing a fast
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response to high-powered pulsed loads on ships. Such loads
include electromagnetic catapults, laser weapons, and high-
energy radars [5]. Although electrifying naval vessels offers
numerous benefits, it also introduces challenges in maintaining
the reliability and controllability of their power systems.
Ship electrification requires significant modifications to port
facilities, power distribution networks, and necessitates new
operational models for energy management and route plan-
ning [6], [7]. Maintenance strategies need to adapt, focusing
on preventative maintenance to prevent costly downtimes.

The technology of a ship evolves over its lifespan, with
new capabilities added and older systems degrading. Keeping
track of this data is crucial, but utilizing it effectively is
even more important. Therefore, innovative solutions, such as
Digital Twins (DT), are needed to address these challenges
to effectively manage onboard power systems. A DT is a
collection of dynamic digital models that accurately represent
an existing physical system or subsystem [8]. Digital twin
technology is instrumental in ship electrification. By collecting
and analyzing data from physical systems, DTs can provide a
dynamic replica of vessel operations. This capability allows for
deep insights into the performance of the vessel, identifying
potential issues before they become critical. For instance,
DTs can simulate extreme conditions to determine a stable
operating point when an event causes system failures. These
simulations enable the Navy to respond to adverse scenarios
without exposing the vessel to unstable operating conditions.
Furthermore, DTs can enhance decision-making by providing
real-time data and predictive analytics, allowing for proactive
maintenance and operating strategies. By forecasting potential
failures and optimizing maintenance schedules, DTs help
ensure the reliability and efficiency of electric vessels.

The maritime industry recognizes the potential of DTs and
plans to utilize them for fleet, port, and end-to-end supply
chain optimization [9]. The primary objective of incorporating
DTs is to enhance asset dependability, optimize maintenance
practices, and minimize operational costs [10]. Building upon
these established goals, this study focuses on developing a
framework for the efficient utilization of DTs in managing the
operation of onboard power systems. In the context of electric
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ships, DTs can be utilized for continuous monitoring of
component health. They can enable informed decision-making
regarding asset utilization, taking into account the degradation
of components and maintenance scheduling. Additionally, DTs
can be used to anticipate future needs, allowing operators to
prepare and optimize systems in advance [11]. Digital twins
hold significant promise for enhancing processes in shipbuild-
ing and maritime applications. By virtually representing the
system of a ship, DTs can support decision-making, reduce
production and operational costs, and increase efficiency [12].
As a result, DTs have the potential to revolutionize aspects
like fleet management, navigation, and maritime maintenance.

Digital twins for power electronics and other systems
have traditionally been developed with a focus on single-
functionality and a one-dimensional approach, a trend that
is evident in the existing literature. Recent developments
include a real-time diagnostic technique for power converters
employing embedded probabilistic DTs, which leverage FPGA
computational advantages but primarily concentrate on elec-
trical parameters [13]. Similarly, a study on power electronic
transformers (PETs) introduced a real-time monitoring system
using FPGA-based DTs [14]. This DT effectively analyzes
PET dynamics with a focus mainly on electrical parameters.
A DT, designed for distributed photovoltaic systems, excels
in identifying electrical faults but does not extend beyond the
electrical domain [15]. Further, a method for monitoring and
assessing the health of power electronic converters using DTs
is demonstrated, focusing primarily on predicting component
degradation [16]. A study detailed the use of DTs for three-
phase power converters with a particular focus on monitoring
the degradation of the output LC filter [17]. Another case
involves using DTs for the monitoring and control of a dc-
dc buck converter, showcasing their ability to dynamically
adapt to changes in the physical converter [18]. An estimation
method using a DT evaluates the health of dc-dc converters,
emphasizing non-invasive techniques for easy implementation
and detailed degradation monitoring, again with an emphasis
on the electrical aspects [19]. While effectively demonstrating
the application of DTs for power converters, all the referenced
DTs focus primarily on the electrical aspects of the converter.

In summary, these studies collectively illustrate the promis-
ing advancements in DT applications for power electronics
and other systems with a common limitation. They tend
to focus on single-function, single-domain applications. The
prevalent trend in existing research points towards these single-
function, one-dimensional DTs. However, DTs often support
assets that are multidimensional by nature, and therefore, their
respective DTs should be able to support the multi-faceted
aspects of the physical asset. Operational DTs play a critical
role in operational monitoring and control tasks. An effective
operational DT, representing a physical asset, should support
various functions and adapt to the multidimensionality of the
asset. This multifunctionality enables the DT to handle a
wide range of representation tasks, from system monitoring
and maintenance prediction to performance optimization. Ad-
ditionally, it can embody multi-domain capability, allowing
it to represent the multidimensionality of the physical asset.
The integration of multi-domain, multi-function DTs within

physical systems facilitates the simulation and management
of various aspects of the physical asset, including but not
limited to electrical dynamics, thermal behaviors, mechanical
stress analysis, and material degradation. This integration also
involves essential activities such as real-time monitoring and
predictive analytics. The National Academy of Sciences (NAS)
concluded that a DT should be defined with a level of fidelity
and resolution appropriate for its intended purpose [20]. With
the understanding that the proposed multi-functional DT can
have several facets to enable an objective or related set
of objectives, the proposed framework enables the DT to
select the most computationally efficient, appropriate fidelity
representation(s) deemed necessary to fulfill its purpose(s) at
any instant in time.

This study introduces a framework that enables the develop-
ment of multi-domain, multi-function DTs for physical assets.
The framework utilizes multiple digital images, as proposed in
this work, to represent the physical asset. Each image serves
as an individual representation, capturing varying levels of
detail specific to different facets of the asset. By systematically
integrating these images into a single DT, the approach ensures
each domain or facet has a specialized representation with its
distinct level of detail, all within the unified framework of the
DT. The contributions of this article are:

1) Developing a framework that enables the design and use
of multi-domain, multi-function DTs and

2) Ensuring computational efficiency in the DT framework
by selectively activating specific functions through corre-
sponding digital images.

In this article, the exploration into the DT technology begins
with foundational definitions and details in Section II. The
concept of digital images is introduced in Section III, followed
by an in-depth examination of the algorithm for activating
digital images in Section IV. The development processes of
the image-based DT framework are explained in Section V.
The development of the image-based DT for the physical
demonstrator is provided in Section VI. The specific algorithm
used for this demonstrator is discussed in Section VII. Insights
into the experimental hardware and the results achieved are
detailed in Section VIII. The article concludes in Section IX,
summarizing the key findings and contributions of the study.

II. DIGITAL TWIN TECHNOLOGY

The concept of using “twins” to represent complex systems
was first introduced in the Apollo program by the National
Aeronautics and Space Administration (NASA) [21]. NASA
defines a DT as a highly accurate simulation that incorporates
multiphysics, scales, and probabilities to mirror the state of its
corresponding hardware [22]. Thus, DTs accurately replicate
the operational behavior of their physical counterparts and
enable real-time communication with them. This integration
provides specific capabilities, such as real-time monitoring and
control, predictive maintenance, and optimization [23].

A DT essentially acts as a faithful integrated representation
of a physical asset or element, known as the Physical Twin
(PT) [24]. The PT refers to the actual real-world entity,
which can vary in complexity. It might be a naval vessel,
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Fig. 1. Differences in data flow between a digital model, digital shadow, and
digital twin.

a piece of maritime infrastructure, a single component of
a ship system, or an entire fleet. The PT encapsulates the
concrete attributes, characteristics, non-idealities, and complex
interactions inherent to the asset. To differentiate between
the asset under study and the additional hardware needed for
DT implementation, a new definition of the physical system
is introduced in this work. This physical system refers to
the hardware encompassing the real-world PT and the edge
computing devices necessary to operate the DT.

Unlike traditional simulation models, a DT can adapt and
self-adjust using real-time data from the PT, leveraging the
vast amounts of data gathered throughout the lifecycle of the
vessel. This self-regulating capability is enabled by feedback
mechanisms that transmit measurements from the PT, allowing
the DT to dynamically respond to real-time changes in the op-
erational environment of the PT. The digital twin can achieve a
sufficient degree of precision in replicating physical attributes,
functionalities, characteristics, and systems [25]. This high-
fidelity replication is foundational for the adaptability of
the DT, enabling its effective functioning across a range of
timescales, including real-time, faster or slower than real-time,
and in event-driven scenarios [11].

In many instances, the differentiation between a digital
model, a digital shadow, and a DT remains ambiguous. Digital
models are commonly used in the design stages of physical ob-
jects within virtual environments. Digital models significantly
reduce design time and costs compared to creating physical
prototypes. They usually lack real-time data exchange between
the physical and virtual realms. Data transfer occurs manually,
where specific conditions from the physical object are applied
to the digital model. As a result, any changes affecting the
physical object are not mirrored in the digital model. This
limitation means that while digital models are effective for
initial design and testing, they may not fully capture real-time
changes, long-term degradation, or physical world interactions.

In a digital shadow, data transfer is unidirectional, moving
exclusively from the physical object to the digital replica. This
implies that the digital shadow acts as a passive reflection
of the physical object, recording and reflecting its real-world
behavior. However, it lacks the capability to influence or
interact with the physical object it represents.

Finally, a DT features bidirectional data flow, as illustrated
in Fig. 1, distinguishing it from a digital shadow. While a DT

Execute

Measurements

Query Response

Fig. 2. A generic cyber-physical digital twin implementation.

receives data from its physical counterpart, it does not send
information back directly for real-time interaction. Instead,
the DT processes and analyzes this data, offering insights
into the operation of the physical counterpart. These results
then guide a decision-making mechanism, which issues control
instructions to the physical object. This process enables the
DT to indirectly influence the behavior of the physical object
through informed decision-making. For instance, depending
on its primary objective, the DT can simulate potential ad-
justments in control mechanisms. Then, the decision-making
mechanism can select an appropriate adjustment to send to the
PT controller for implementation.

Before developing a DT, it is essential to determine which
features of the physical asset require representation in the DT.
Subsequently, establishing a decision-making mechanism with
well-defined objectives is essential. Such a step ensures the DT
effectively addresses the requirements of the decision-making
process. Identifying these key features and functionalities is a
foundational aspect of the DT development process, enabling
it to fulfill its intended purpose efficiently.

In DT-overlaid systems, the decision maker can take differ-
ent forms, such as a control algorithm, artificial intelligence, a
human-in-the-loop, or a combination of these elements. It acts
as a key intermediary between the DT and the PT, as shown
in Fig. 2. The role of the decision maker begins with querying
the DT for essential data and insights. Within the generic DT
framework, a query is defined as a set of instructions sent
by the decision maker to the DT. Queries directed at a DT
can vary extensively. Under the assumption of multi-functional
DTs, these queries may cover a wide range of objectives
but are likely to focus on a single aspect of the physical
asset in each query. They can range from requesting a single,
instantaneous value, such as a specific temperature reading, to
continuously predicting a specific behavior of the PT. When
the DT receives a query from the decision maker, it generates
detailed projections as a response. The decision maker then
uses these responses for an in-depth analysis, considering
operational factors. Finally, the decisions derived from the
“detailed projections” generated by the DT in response to
the query are executed on the PT. This transfer of decisions
ensures that the PT controls are updated and aligned with the
latest insights and directives, facilitating real-time adaptation
and synchronization between the digital and physical realms.
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Fig. 3. Timescales of different physical domains and representations.

III. CONCEPT OF DIGITAL IMAGES

In the development of DTs for power system components,
the selection of an appropriate representation type and level
of abstraction is fundamental. The choice of representation
should balance fidelity, computational cost, and objectives of
the representation. Digital twins are generally given a single,
specific representation task; however, various functions can be
delegated to the DT to support, leaving room for ambiguity in
the design of the DT. Digital twins can be multi-domain and
multi-functional, as they may need to provide insights into
different system domains and enable various objectives. The
decision maker, as proposed in this framework, specifies the
representation type for the DT based on the query, ensuring a
targeted and efficient response.

Using a universal DT representation for diverse queries
is computationally expensive. This one-size-fits-all approach
faces efficiency challenges as it can not adapt or ‘divide
and conquer’ when dealing with queries that are smaller
or less complex than the original design of the all-purpose
representation. Queries may require different domain rep-
resentations with various timescales to interact, which is
computationally expensive using a single DT representation
for this purpose. For instance, electrical domain responses
usually evolve faster than thermal ones. Additionally, different
fidelity of the electrical domain representation require different
timescales as illustrated in Fig. 3. Therefore, attempting to
compile a representation of these two domains or different
levels of abstractions using similar timescales can lead to
computational inefficiencies or inaccuracies based on time-
step requirements. It is essential to consider the distinct
timescales when integrating these domains within a single DT
to ensure not only accurate representation but also efficient
computational resource utilization.

Recognizing the complexity and multifaceted nature of
queries that lead to DTs supporting multiple functions, as well
as the different timescales on which various domains operate,
this research introduces the concept of digital image. These
digital images serve as individual representations that capture
varying levels of detail specific to facets of the physical asset.
Within a DT, digital images act as specialized representa-
tions for each domain of the PT. This method systematically
groups cooperative digital images within a single DT, ensuring
clarity and precision in the reflection of the physical asset.
One primary advantage of using the digital image concept
lies in its capability to selectively engage and utilize digital
images relevant to specific inquiries or analyses. This selective
engagement allows for the efficient deactivation of irrelevant
images to save computational resources.

In simpler terms, consider building a folio of a human

Fig. 4. A folio of digital images depicting the face of a person.

face using various digital images. This collection would be
comparable to an extensive portfolio that provides diverse
perspectives of the face. Each image would be captured from a
unique angle; some might highlight the profile view, focusing
on the jawline and nose while others could be frontal shots,
emphasizing features like the eyes and mouth, as shown
in Fig. 4. Additional images might zoom in on specific details,
such as the intricate lines and patterns of the skin or the
way the facial muscles move during different expressions.
These images, each offering a different viewpoint, collectively
present a rich, multidimensional portrayal of the face. They
can illustrate a range of expressions, capture changes over
time, or highlight the unique features of the face. When
combined, these diverse images form a comprehensive, holistic
representation, giving a detailed view that encompasses the
many facets and subtleties defining the appearance of an
individual face. If the goal is to analyze a digital image
focusing on the jawline within the face folio, only that specific
image is activated while the others are deactivated. This
selective activation conserves computational resources leading
to faster processing times and reduced energy consumption.
This strategic resource management is essential in large-
scale or continuous operations where efficiently managing
computational load yields substantial long-term benefits such
as faster processing times and reduced energy consumption.

The DT features a folio that includes a collection of digital
images. Each image represents a unique facet of the PT. Digital
images within the DT can represent various domains with
differing fidelities. To illustrate, the electrical dynamics of the
physical asset can adopt multiple modeling techniques. Some
digital images may employ switching modeling techniques
while others might use switching-averaged techniques. De-
pending on the nature of the query, the most appropriate digital
image is employed. This process enhances computational effi-
ciency by integrating representations of individual subsystems
across different timescales. Utilizing digital images simplifies
managing complexities in a multi-domain, multi-function DT
environment, particularly those related to varied response
times and time-steps.

Multiple digital images can be uploaded to a DT to respond
to queries depending on the available memory of the edge
computing platform. These images can vary in fidelity and/or
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Fig. 5. A folio of images which can be used within a single digital twin.

domain. Within the DT representation for a physical asset,
images across various, domains, such as electrical, thermal,
chemical, mechanical, and service-related areas like remain-
ing useful life, health monitoring, and maintenance can be
utilized. For instance, a DT of a generator could include
images displaying electrical data such as voltage and current,
mechanical data like rotational speed and torque, fatigue data
indicating wear and tear and remaining useful life, and thermal
data showing temperature distribution. These images offer
a diverse range of functionalities beyond typical hardware
measurements, especially quantities that cannot be directly
measured. A generic DT, illustrated in Fig. 5, is comprised
of a folio of digital images representing various components
of an arbitrary system, including power electronics, energy
storage, and rotational machines. Digital images in a DT
have the flexibility to operate in various modes, functioning
independently, in a sequence, or concurrently in parallel, based
on the specific requirements of queries.

All DT implementations require a physical asset to be
studied, sensor measurements of the PT, memory for historical
data and digital twin storage, Random-Access Memory (RAM)
for DT studies. The necessary amount of processing power is
dependent on the DT fidelity, the type of decision aid used to
optimize performance, and the number of projected scenarios
to be studied in parallel. For human-in-the-loop interactions,
an interfacing computer with some form of a Graphical User
Interface (GUI) is necessary to provide queries and/or select
decisions to execute. However, unified DTs are scope-limited
once these requirements have been set. Therefore, an image-
based DT framework is proposed to enable more multi-
domain, multi-function scopes of DT studies while reducing
the processing power required by self-selecting to a minimal
working set of representative studies needed to answer a
specific query. The process of activating these images is
conducted within the framework set by the decision maker, and
the subsequent section details the methodology for selecting
these digital images.

IV. IMAGE MAPPING AND ACTIVATION

The role of the decision maker is pivotal in the efficient
usage and activation of digital images, as defined in Section III,
specific to the provided query. Each image within the DT is

Query-image mappingalgorithm
Activation module

Composit query handling module

Dependency mapping

Database module

NLP module

Query reception module

Query

Query interperationmodule

Select

Encode

Evaluate

KeywordsParse
Timestamp

Fig. 6. Structure of the Decision maker for query handling and image
activation.

assigned a unique identity, allowing the decision maker to
identify and activate the correct image in response to the query.
The decision maker structure includes internal modules to
handle queries asked by the human-in-the-loop, as illustrated
in Fig. 6. These modules ensure the efficient usage and
activation of digital images, maintaining the necessary context
for each query.

A. Query Interpretation Module

Queries are input by the human-in-the-loop decision maker
through a graphical user interface. The query interpretation
module is responsible for receiving and parsing these queries.

1) Query reception: This initial module receives and logs
queries entered by the human-in-the-loop. It ensures
accurate logging and timestamping upon entry and serves
as the gateway to the query interpretation module.

2) Natural language processing (NLP) module: This mod-
ule analyzes and interprets queries. It parses the query to
extract vital elements, such as keywords, entities, context,
and the specific actions requested by the decision maker.
A database aids in matching queries with relevant digital
image identities stored within the DT.

3) Database: A database, containing keywords and context,
is housed within the interpretation module. Once a query
is analyzed and digital image identities are detected, the
module then passes these identities to the query-image
mapping algorithm.

After interpreting the query and identifying the relevant
images, the query interpretation module transmits the unique
DT image identities to the query-mapping algorithm for de-
pendency checks. The interpretation module operates on the
same computational device as the query-mapping algorithm.

B. Query-Image Mapping Algorithm

The query-image mapping algorithm recognizes and accom-
modates the hierarchical relationships between digital images
by considering their dependencies. When selecting an image,
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it is crucial to consider these dependencies, as some images
rely on output data from other images. For instance, a thermal
image of a power converter requires power loss data from an
electrical image. Consequently, the image selection process
within the algorithm determines whether these dependent
images operate sequentially or in parallel. This consideration
is critical to ensure the algorithm effectively activates multiple,
interdependent images as necessary.

1) Dependency mapping: A lookup table was developed
to record dependencies between digital images. This
approach allows the dependency mapping component of
the algorithm to evaluate which images rely on others
for comprehensive data, ensuring that the query-image
mapping algorithm effectively activates interdependent
images as required.

2) Composite query handling: An algorithm manages
queries that require the activation of multiple images, par-
ticularly those with dependencies. Handling queries that
a single, independent image cannot resolve is essential.

3) Activation: In this process, images are activated in the
necessary sequence as required, ensuring that all neces-
sary data is available.

V. IMAGE-BASED DIGITAL TWIN FRAMEWORK

The image-based DT framework integrates various modules
and processes to create a comprehensive system representation
for managing and analyzing data from physical assets. Users,
or the human-in-the-loop, enter queries through a graphical
user interface integrated with the decision-making structure.
These queries initiate a series of actions within the DT,
ultimately resulting in providing insights to the PT. Queries
are input by the human-in-the-loop decision maker through

the graphical user interface, serving as the entry point for
all interactions with the DT. Once a query is submitted, it
is logged and timestamped by the query reception module
to ensure accurate tracking and processing. After the query
is processed and relevant images are identified, the query-
mapping algorithm activates the appropriate digital images.
The activation process involves sending binary codes to the
DT. A simple digital interface within the DT receives these
binary codes, with each code linked to the activation port of
a digital image to activate or deactivate the image, as shown
in Fig. 7. The system checks for dependent image identities
and activates the corresponding images whenever a primary
image is selected, ensuring that the DT utilizes all necessary
data and images to address complex, multi-faceted queries.
Additionally, the query-image mapping algorithm provides
suggestions when faced with irrelevant queries. If no specific
query is given, the algorithm defaults to selecting the lowest
fidelity images to conserve computational resources.

After activating the appropriate digital images, the DT
provides a response to the decision maker. The DT interfaces
directly with the sensors of the PT to receive real-time data
streams. The real-time data from these sensors is integrated
into the activated digital images, providing a dynamic and
accurate representation of the PT. This integration enables the
DT to adapt and self-adjust based on real-time changes and
conditions in the operational environment of the PT. Based
on the insights generated by the activated digital images, the
DT provides responses to the decision maker specific to the
query asked. These responses include detailed projections and
analyses that guide the decision-making process. The decision
maker evaluates these insights, considering operational factors
and objectives. Once a decision is made, the necessary actions
are formulated and conveyed to the PT. The decision process
involves sending control instructions from the decision maker
to the PT for necessary modifications, ensuring that the phys-
ical controls are updated and aligned with the latest insights
from the DT. This bidirectional communication facilitates real-
time adaptation and synchronization between the digital and
physical realms.

VI. DEMONSTRATOR DIGITAL TWIN DEVELOPMENT

To validate the proposed image-based DT framework, the
demonstrator, depicted in Fig. 8, is utilized. This demonstrator
is comprised of an energy storage unit and a dc-dc boost
converter. The development of a multi-domain, multi-function
image-based DT for this energy storage system uses a folio
of digital images with the system serving as the PT. In this
demonstration, the DT is assumed to replicate the electrical
and thermal behaviors of the converter, estimate the State of
Charge (SoC) of the energy storage through indirect mea-
surements, and respond to written queries from a decision
maker. Based on the assumed capabilities of the DT, it should
include a high-fidelity switching image of the converter. This
image is essential for calculating the power losses in the
converter. Additionally, a thermal image is needed to replicate
the thermal behavior using these power losses. A switching-
averaged image is utilized to determine the average inductor
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Fig. 8. A folio of digital images for the demonstrator.

current, which is necessary for the image that estimates the
SoC of the energy storage since the average inductor current
of the converter equates to the output current from the energy
storage. With these images, the DT will be able to represent
the multifaceted aspects of the energy storage system.

The digital images presented in this paper are far from
comprehensive but can be used to simply demonstrate the pro-
posed framework. While alternative techniques like advanced
artificial intelligence, machine learning, lookup tables, or data-
driven modeling could be used to represent these images,
this paper focuses mainly on the image-based DT framework
itself, rather than on the optimal methods for developing these
images.

A. Electrical Domain Switching Digital Image

A boost dc-dc converter is used as the interfacing converter
for the energy storage, as depicted in Fig. 8. The electrical
domain switching image of this converter is shown in Fig. 9.
In power semiconductor devices, power losses include con-
duction losses, Pcond, and switching losses, Psw. Conduction
losses depend on the current flowing through the device, iL, the
on-state resistance of the device, RDS,on, and the duty cycle,
D. Power losses resulting from conduction are

Pcond1 = DiL
2RDS,on and (1)

Pcond2 = (1−D)iL
2RDS,on (2)

for the upper and lower devices, respectively.
Switching losses depend on the switching frequency, fsw,

and the total energy dissipated during both the turn-on, ET,on,
and turn-off, ET,off, transitions of the device. The power losses
due to switching for the upper and lower devices are

Psw1 = fsw(ET,on + ET,off) and (3)

Psw2 = fsw(ET,on + ET,off). (4)

L rL C

rC

iL

Vin

Vout

iout

S1

S2

Fig. 9. Electrical domain switching image of the converter.

Finally, the total power losses in the switching devices, Ptot,
can be obtained by summing up the power losses due to
conduction and switching for each device as

Ptot = Pcond1 + Pcond2 + Psw1 + Psw2. (5)

Based on the aforementioned equations, the electrical domain
switching image can be employed to calculate the total losses
generated by the switching devices, which are subsequently
dissipated as heat in the cooling loop.

B. Electrical Domain Switching-Averaged Digital Image

Instead of analyzing the converter with its rapidly switching
states when it is not necessary, which can be complex and com-
putationally intensive, the switching-averaged model simplifies
the process. This simplification is achieved by averaging the
circuit variables over a switching period. The model is derived
by averaging the inductor voltage and current equations over
one switching period. The state-space averaging technique is
typically used, which involves averaging the state equations
of the system [26]. The switching-averaged image of the
boost converter, incorporating parasitic elements, is depicted
in Fig. 10. The validation of this image is detailed in [27]. This
image provided an average inductor current with a maximum
deviation of 1.2% from the physical measurements.

C. Digital Image for State of Charge Estimation

The SoC digital image used the Coulomb counting method
to estimate the SoC of the energy source supplying the
converter. The Coulomb counting method quantifies the dis-
charging current of the battery and integrates this current over
time to estimate the SoC(t). This technique computes the
SoC based on the measured discharging current, I(t), and the
SoC values estimated previously, SoC(t−1) [28]. The SoC is
calculated as

SoC(t) = SoC(t− 1) +
I(t)∆t

Qn
(6)
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Fig. 10. Electrical domain switching-averaged image of the power converter.
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TABLE I
DIGITAL IMAGES ASSIGNED IDENTITIES AND THEIR DEPENDENCY AND CONTEXT

Digital image Assigned identity Keywords Context Dependent image
Electrical domain high fidelity switching model E1.1 Electrical switching None
Electrical domain low fidelity switching-averaged E1.2 Electrical low None
State of charge estimator S1.1 Charge state E1.2
Thermal domain high fidelity image T1.1 Thermal behavior E1.1

where Qn is the battery cell capacity and ∆t is the time-step
between (t−1) and t. This image uses the input current to the
converter by utilizing the average value inductor current, iL,
from the electrical domain switching-averaged digital image.
This SoC was estimated with a maximum deviation of 2%
from the physical measurements.

D. Thermal Domain High Fidelity Digital Image

Data from the electrical switching image are used as inputs
to the thermal digital image to determine the thermal behavior
of the converter. The thermal digital image of the converter is
developed using the Cauer thermal network to represent the
connection of the MOSFETs to the heat sink assembly. Cauer
thermal networks are a type of electrical network that can be
used to develop the thermal behavior of electronic compo-
nents [29]. The power converter incorporates two switching
devices attached to a common heat sink.

The thermal digital image of the converter is shown in
Fig. 11. It includes junction to case resistances, Rj-c1 and Rj-c2,
case capacitances, Ccase1 and Ccase2, case to mounting bracket
resistances, Rc-m1 and Rc-m2, mounting bracket capacitance,
Cmount, mounting bracket to heat sink thermal resistance,
Rm-hs, thermal capacitance of the heat sink, Cheat sink, and heat
sink to ambient air resistance, Rhs-air. Physical measurements
and experiments were conducted to determine the resistances
and capacitances shown in Fig. 11. In the validation process of
this image, a physics-based model was initially built and ver-
ified in Matlab. In this setup, the the thermal image mirrored
the thermal behavior of the converter with a maximum average
percentage deviation of less than 2.5%. Further details on this
validation are provided in [30]. Lower-order thermal images
could also be added as needed; however, in this demonstration,
only one representation is used.

In this proof-of-concept framework, it is assumed that data
availability from the PT is ensured to demonstrate the func-
tionality of the framework. While this study does not address

Tambient
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Ploss_sw1

Rc-m1

Rm-hs Rhs-air

Rj-c2

Ploss_sw2

Ccase2

Rc-m2
Cmount Cheat sink

Ccase1

Fig. 11. Thermal domain image of the converter.

challenges related to data quality, real-time data acquisition,
and handling incomplete or uncertain data, these factors are
recognized as important for all DTs. These four digital images
are inserted to the DT, as illustrated in Fig. 8. In order to
enable the activation of the images, the next step involves
developing the specific query-image mapping algorithm for
the demonstrator.

The accuracy of the responses from the digital images
was assessed by comparing them to actual measurements
from the PT. The deviation between the digital images and
measurements was calculated using Mean Absolute Percentage
Error (MAPE) measures the difference between digital image
calculations and actual values. This metric is determined by
taking the absolute difference between the simulated data
provided by the digital image, Xsim, and the corresponding
experimental output data of the PT, Xexp, dividing by the
experimental value, and averaging these percentage differences
across all data points as

MAPE = mean
(∣∣∣∣Xexp −Xsim

Xexp

∣∣∣∣) 100% (7)

All representations used in this work have an accuracy greater
than 97.5%

VII. DEMONSTRATOR SPECIFIC QUERY-IMAGE MAPPING
ALGORITHM

The DT, developed in Section V, includes a folio of four
digital images; each of which can be activated as needed to
serve distinct functions. Utilizing these images within the DT
allows it to function across multiple domains and for various
representation purposes. As discussed in Section IV, each
image within the DT is assigned a unique identity, enabling
the query-image mapping algorithm to identify and activate
the correct image in response to a query. This process re-
quires a database containing keywords and context for parsing
queries as well as an understanding of image dependency
to recognize and accommodate the hierarchical relationships
between digital images. In this simple example, the database
is a lookup table. Table I presents the identities assigned to
digital images in this demonstration, serving as a lookup table
that includes dependencies between digital images according
to the query context. From Table I, it is evident that in the
SoC estimator image, S1.1 is the primary image while the
electrical switching-averaged image, E1.2, is the dependent
image, providing the average value of the inductor current.
Similarly, the thermal image, T1.1, relies on the electrical
domain switching image, E1.1, for calculating power losses.
Therefore, for thermal behavior queries, T1.1 is designated as
the primary image with E1.1 serving as the dependent image.
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When a query is received, the algorithm uses keywords and
context to identify the primary image. It checks Table I to
determine if a dependent image is required and then sends a
binary code to the DT to activate these images. To clarify the
demonstrator algorithm, example queries and their respective
image selection processes are provided:

• Query 1: “Display the thermal behavior of the converter.”
Extraction and mapping: The query interpretation

module processes the query and extracts key elements.
It identifies the necessity for thermal image, T1.1, by
identifying keywords associated with thermal behavior.

Dependency check: The query-image mapping algo-
rithm evaluates dependencies, determining from Table I
that T1.1 relies on data from the electrical image, E1.1.

Activation: Following the dependency mapping, the
process is initiated by first activating E1.1 to calculate
the necessary electrical power losses. Once this data
is calculated, T1.1 is then activated to replicate the
thermal behavior, as illustrated in Fig. 12.

• Query 2: “What is the state of charge of the battery?”
Extraction and mapping: The query interpretation

module processes the query, focusing on keywords
associated with the state of charge. This analysis guides
the selection of the SoC estimator image, S1.1.

Dependency check: The query-image mapping algo-
rithm determines that S1.1 requires data from the elec-
trical switching-averaged image, E1.2, and previous
SoC data.

Activation: Following the dependency mapping, the
system first activates E1.2 to provide the necessary
inductor current. Subsequently, S1.1 is activated to
estimate the SoC.

If the query is empty, the algorithm automatically selects the
lowest fidelity images to conserve computational resources.
In this scenario, E1.2 is the default activated image for this
demonstration.

After the algorithm activates the appropriate digital images
based on the query, the DT generates and provides a response.
Certain digital images might require historical data for re-

NI PXIe-8880

Electronic 
DC load

Energy
storage

Controller
B-Box RCP

NI cRIO
9035

Converter
modules

Fig. 13. Experimental hardware setup.

TABLE II
PARAMETERS OF THE IMPLEMENTED CONVERTER

Parameters Value
Input voltage, Vin 102.4V
Output voltage, Vout 200V
Switching frequency, fsw 20 kHz
Inductor, L 1.25mH
Output capacitor, C 500 µF

initialization. For instance, the SoC estimator image depends
on knowledge of previous or initial SoC levels. However,
this requirement can be met by obtaining an instantaneous
measurement from the hardware when the image is activated
without the need for historical data. Next, the decision maker
analyzes the response and conveys the necessary actions
to the PT for the required modifications. The flexibility of
query processing can be enhanced by incorporating additional
keywords as desired. The mapping method is based on a
natural language processing technique that extracts keywords
and context from a database and maps related digital images.
Other techniques can also be utilized for this mapping algo-
rithm, such as the convolutional neural network-based feature
extraction presented in [31].

VIII. EXPERIMENTAL SETUP AND RESULTS

A. Physical Twin Hardware Setup

The hardware testbed used is shown in Fig. 13. The
power converter derives its input from an energy storage, two
48 -V, 3.5 -kWh SimpliPhi batteries with a nominal voltage
of 51.2V, connected in series resulting in a nominal battery
voltage of 102.4V [32]. The voltage was boosted to a bus
voltage of 200 -V through the interface converter. The con-
verter was implemented using Imperix PEB8038 half-bridge
SiC power module [33]. This module includes two power
semiconductor switches and is equipped with an onboard
capacitance of 500 µF. The design of the converter included an
inductor of 1.25mH. The converter parameters are provided
in Table II. An Imperix DIN800V sensor was used to monitor
the output voltage [34]. To measure the load current, an
Imperix DIN50A current sensor was connected in series with
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Execute

Measurements

Fig. 14. The physical system and data flow as developed for the experimental
demonstrator.

the output of the converter [35]. K-Type thermocouples with an
accuracy of ±1% were used to measure ambient and heat sink
temperatures. Nested loop controls were utilized and integrated
into an Imperix B-Box control platform for controlling the
converter [36].

B. Digital Twin and Decision Maker Setup

The DT, along with its internal image folio and represen-
tations, is deployed on the National Instruments CompactRIO
9035 (NI-cRIO 9035) [37]. The logic and data handling of the
DT are developed using C code and LabVIEW. Then these
codes were deployed on the NI-cRIO using NI VeriStand.
The NI-cRIO 9035 interfaced directly with PT sensors and
enabled the DT to receive real-time data streams. In this setup,
a human-in-the-loop served as the decision maker, submitting
queries in real-time as shown in Fig. 14. The interaction
between the human-in-the-loop decision maker and the auto-
mated digital image selection process was facilitated through
a NI PXIe-8880 controller [38]. The NI PXIe was used for
data acquisition and served as a storage device. It received all
sensor measurements related to the PT and logged activation
codes for digital images along with their timestamps. The data
stored on the NI PXIe was directly accessed by the human-in-
the-loop decision maker. Data logging occurred at a sampling
frequency of 10Hz. Sensor measurements were relayed to the
DT via Ethernet using the User Datagram Protocol (UDP). The
human-in-the-loop decision maker submitted queries through
a graphical user interface which were logged and timestamped
for precise tracking.

C. Results

During the experiment, various queries were utilized to
assess the effectiveness of the algorithm and the response from
the DT. The experimental design comprehensively covered
the capabilities of the DT by targeting different domains and
functions through diverse queries. The following queries were
utilized:
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Fig. 15. The outcomes of the image-based DT framework demonstrator. From
top to bottom: bus load current; average inductor current; state of charge
(SoC) of the energy storage; and thermal behavior. The respective digital
twin responses are provided when required by the specific query.

• Query 1: “ ” [Empty, no query was asked].
• Query 2: “Show the SoC of the energy storage.”
• Query 3: “Display the thermal behavior of the converter.”
• Query 4: “Show the battery state of charge.” [Different

wording but similar intent as Query 2].
• Query 5: “Is the generator currently operational?” [Irrel-

evant query].
To evaluate the algorithm comprehensively, two distinct
queries were formulated with differing wording but similar
underlying intent. When the experiment began, an electronic
DC load was utilized to apply a random load profile, initially
set at 1A and randomly varied in steps of 1A, as shown in
the first plot of Fig. 15.

At the beginning of the experiment, Query 1 was initiated,
as seen in Fig. 15. The objective of this query was to evaluate
the default response behavior of the DT when no specific query
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is provided. This was an empty query; therefore, according to
the algorithm, the lowest fidelity image was activated while
the remaining images were deactivated. In this demonstration,
it is the electrical switching-averaged image, E1.2. In response
to this query, the DT provided an average value of the inductor
current, aligned with that of the PT, as illustrated in the second
plot of Fig. 15. The third and fourth plots, showing the SoC of
the energy storage and the thermal behavior of the converter,
respectively, indicate no response from the DT. This absence of
response was due to the deactivation of the images responsible
for those responses following the query.

When Query 2 was initiated to request an estimation of the
SoC of the energy storage, the electrical averaged image E1.2
remained active as it is the dependent image for providing
the SoC. The algorithm then activated the primary image
S1.1, responsible for estimating the SoC. The third plot in
Fig. 15 shows the DT provided the SoC of the energy storage
when Query 2 was initiated. This data was obtained by first
capturing a SoC measurement from the PT, serving as the
initial SoC value in the DT. This initialization highlights the
dynamic interaction between the DT and the PT in effectively
representing the status of the system.

When Query 3 was initiated to target the thermal behavior
of the converter, the query-image mapping algorithm activated
the primary image T1.1, responsible for the thermal behavior
concurrently with the electrical switching image E1.1. It is
shown from the fourth plot of Fig. 15 that the DT provided
the representation of the thermal behavior shortly after the
activation of these images. This brief delay was attributed
to the time required for E1.1 to calculate the power losses.
Similar to the process of SoC estimation, the DT initially
acquired a temperature measurement from the PT to establish
the initial temperature reading. A closer examination of the
zoomed section of the plot indicates that whenever there was
a change in the load, the DT was promptly reinitialized by
incorporating a new measurement from the PT.

Query 4 was a different wording query with similar intent
as Query 2 which requires a SoC estimation. The objective of
this query is to verify the response consistency of the DT to
differently worded queries with similar intent. Therefore when
Query 4 was initiated, the DT provided an estimation of the
SoC, as can be seen from the third plot of Fig. 15.

When the irrelevant Query 5 was initiated, the algorithm
defaulted the selection to the electrical average image E1.2 and
deactivated the remaining images. Additionally, the following
response from the image-mapping algorithm was provided to
the decision maker:
No relevant image found. Please refine your query or use more
specific keywords, or use the following suggestions:

1. Check the SoC of the ES.
2. Display the thermal behavior of the converter.

Referring to Fig. 15, it is observed that the DT provided
responses exclusive to each specific query while deactivating
all other images and thus eliminating irrelevant responses.
The selection of experimental parameters, such as the 200-
V bus voltage for the dc-dc converter and the 10Hz data
logging frequency, was arbitrary and based on the capabil-
ities of the available laboratory hardware. Potential issues

encountered during the experiments included network latency,
sensor noise, and synchronization challenges between the
physical and digital twins. These were mitigated by enhancing
the network configuration, using precise timestamping for all
data packets to ensure accurate synchronization, and applying
filtering techniques to reduce sensor noise. The computational
efficiency of the proposed framework was analyzed against the
state-of-the-art DT using Query 3. The total CPU utilization
for answering Query 3 using the image-based DT framework
which only required two images, was 17.08%. In comparison,
the CPU utilization for a unified DT with all the described
DT representations running simultaneously was 22.23%. This
test was conducted on an Intel(R) i7 Windows machine and
shows a 5.15% improvement when using an image-based
multi-domain, multi-function DT over a unified DT.

IX. CONCLUSIONS

This research introduced an image-based DT framework
that enables multi-domain, multi-function DTs to address the
complexities inherent in modern power systems and other
complex systems. The proposed framework utilizes multiple
digital images, each representing various facets of a physical
asset and encapsulating specific domains or facets with unique
levels of detail. The image-based DT framework provides
a detailed and comprehensive representation of the physical
asset. By integrating these digital images into a single DT,
it ensures a specialized and detailed portrayal of each facet
of the asset, supporting a wide range of functionalities. The
experimental results validated the effectiveness of this frame-
work, showing its capability to replicate the behavior of the
PT and portray varying levels of detail according to queries
asked by the decision maker. The ability of the framework
to selectively enable specific functions in the DT aligns
with efficient computational resource management, essential
for large-scale or continuous operations. The scalability and
flexibility of the image-based DT framework accommodate
evolving technologies and component upgrades over the long
lifespans of naval ships. This approach ensures continuous
adaptation and integration of new advancements as initial
technologies are replaced or updated.

Additional functionalities can be added into the DT as
digital images as needed. These functionalities depend on the
essential operational objectives for which the decision maker
requires an answer. The flexibility of query processing can
be enhanced by adding more keywords or by implementing a
feedback system. This system would learn from past queries,
thereby improving the accuracy of image selection over time.

Query processing is merely one area of improvement for
this image-based DT framework. Future work will focus on
mathematically determining digital image selection, prioriti-
zation, and shifts between digital images. This process will
be based on image and hardware ontology, real-time data,
and in situ system requirements and demands on the DT.
Although this level of detail was not required for the simplified
example provided in this work, it becomes essential for more
complex PTs and an increased number of digital images. A
more sophisticated methodology will be needed to balance
computational demands and required image fidelity.
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